Parameter Estimation and Control of Nonlinearly Parameterized Systems

نویسندگان

  • Chengyu Cao
  • Alexandre Megretski
چکیده

Parameter estimation in nonlinear systems is an important issue in measurement, diagnosis and modeling. The goal is to find a differentiator free on-line adaptive estimation algorithm which can estimate the internal unknown parameters of dynamic systems using its inputs and outputs. This thesis provides new algorithms for adaptive estimation and control of nonlinearly parameterized (NLP) systems. First, a Hierarchical Min-max algorithm is invented to estimate unknown parameters in NLP systems. To relax the strong condition needed for the convergence in Hierarchical Min-max algorithm, a new Polynomial Adaptive Estimator (PAE) is invented and the Nonlinearly Persistent Excitation Condition for NLP systems, which is no more restrictive than LPE for linear systems, is established for the first time. To reduce computation complexity of PAE, a Hierarchical PAE is proposed. Its performance in the presence of noise is evaluated and is shown to lead to bounded errors. A dead-zone based adaptive filter is also proposed and is shown to accurately estimate the unknown parameters under some conditions. Based on the adaptive estimation algorithms above, a Continuous Polynomial Adaptive Controller (CPAC) is developed and is shown to control systems with nonlinearities that have piece-wise linear parameterizations. Since large classes of nonlinear systems can be approximated by piece-wise linear functions through local linearization, it opens the door for adaptive control of general NLP systems. The robustness of CPAC under bounded output noise and disturbances is also established. Thesis Supervisor: A.M. Annaswamy Title: Senior Research Scientist

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fuzzy adaptive tracking control for a class of nonlinearly parameterized systems with unknown control directions

This paper addresses the problem of adaptive fuzzy tracking control for aclass of nonlinearly parameterized systems with unknown control directions.In this paper, the nonlinearly parameterized functions are lumped into the unknown continuous functionswhich can be approximated by using the fuzzy logic systems (FLS) in Mamdani type. Then, the Nussbaum-type function is used to de...

متن کامل

ADAPTIVE FUZZY TRACKING CONTROL FOR A CLASS OF PERTURBED NONLINEARLY PARAMETERIZED SYSTEMS USING MINIMAL LEARNING PARAMETERS ALGORITHM

In this paper, an adaptive fuzzy tracking control approach is proposed for a class of single-inputsingle-output (SISO) nonlinear systems in which the unknown continuous functions may be nonlinearlyparameterized. During the controller design procedure, the fuzzy logic systems (FLS) in Mamdani type are applied to approximate the unknown continuous functions, and then, based on the minimal learnin...

متن کامل

Observability and Local Observer Construction for Unknown Parameters in Linearly and Nonlinearly Parameterized Systems

Using geometric concepts from observability theory for nonlinear systems, we propose an approach for parameter estimation for linearly and nonlinearly parameterized systems. The proposed approach relies on extending a parameter estimation problem to a state estimation problem by introducing the parameters as auxiliary state variables. Applying tools from geometric nonlinear control theory we es...

متن کامل

Parameter Convergence in systems with Convex/Concave Parameterization

2 Statement of the Problem A large class of problems in parameter estimation concerns systems where parameters occur nonlinearly. In [1]-[5], a stability framework for identification and control of such systems has been established. We address the issue of parameter convergence in such systems in this paper. Sufficient conditions under which parameter estimates converge to their true values are...

متن کامل

Adaptive Estimation in Nonlinearly Parameterized Discrete-Time Nonlinear Systems

This paper proposes an uncertainty set update method for a class of discretetime nonlinearly parameterized systems. The method is based on the sequential application of a method proposed for linearly parameterized uncertain nonlinear systems in which the nonlinearly parameterized systems can be treated as linearly parameterized uncertain systems at each step. It is demonstrated that, given a pe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014